Time of day	Observed-Acidents	Expected-Acidents	P(Expected)	Problem: Suppose a safety officer proposes that bicycle accidents will occur with the following distributions: Midnight - $3 \mathrm{AM}=.05$ $3 A M-6 A M=.05$ $6 A M-9 A M=.10$ 9AM - Noon $=.10$ Noon-3PM $=.15$ $3 P M-6 P M=.15$ $6 \mathrm{PM}-9 \mathrm{PM}=.20$ 9PM - Midnight $=.20$ Test that the observed values equal the expected distribution @ alpha = . 05 level
Midnight to 3AM	38		0.05	
3AM - 6 AM	29		0.05	
6AM - 9AM	66		0.1	
9AM - Noon	77		0.1	
Noon - 3PM	99		0.15	
3PM - 6PM	127		0.15	
6PM - 9PM	166		0.2	
9PM - Midnight	113		0.2	
Total	715	0	1.00	

Chi-Square Evaluation					
$\begin{aligned} & \mathrm{Ho:} \\ & \mathrm{Ha}: \end{aligned}$	Observed	Expected	Sum of the Squared Differences (O-E)^2	Goodness of Fit [(O-E)^2] / E	
	38		1444		
	29		841		
	66		4356		
	77		5929		
	99		9801		
	127		16129		
	166		27556		
	113		12769		
	715	0	78825		
				Chi- Square Value	
	State Results here:	State Results here:			
Chi-Square Test Statistic					
=CHIINV(Alpha,D.F)					
p-Value					
=CHIDIST(Chi-Square Value,D.F)					

